Strukturen cäsiumhaltiger Fluoride, III. Die Kristallstrukturen der hexagonalen Elpasolithe: 12 L–Cs₂NaCrF₆, 12 L–Cs₂NaFeF₆ und 2 L–Cs₂LiGaF₆*

DIETRICH BABEL AND ROBERT HAEGELE

Sonderforschungsbereich 127 (Kristallstruktur und chemische Bindung) und Fachbereich Chemie der Universität, D 355 Marburg/Lahn, Lahnberge

Received December 20, 1975

Die Ergebnisse vollständiger röntgenographischer Einkristallstrukturbestimmungen an den in der Raumgruppe R3m kristallisierenden isostrukturellen Verbindungen Cs₂NaCrF₆ und Cs₂NaFeF₆ mit 12 L-Struktur, sowie an 2 L-Cs₂LiGaF₆ (Raumgruppe P3m1), werden mitgeteilt. Die flächenverknüpfte Oktaeder enthaltenden Strukturen der Verbindungen werden im Vergleich zu den hexagonalen Fluorperowskiten diskutiert und die gefundenen Mittelwerte der Abstände Cr-F = 1.910 Å, Fe-F = 1.926 Å, Ga-F = 1.93 Å neueren Literaturdaten gegenübergestellt.

The results of complete X-ray single-crystal structure determinations of the isostructural compounds Cs_2NaCrF_6 and Cs_2NaFeF_6 , crystallizing in a 12 L-structure in space group R3m, as well as of 2 L- Cs_2LiGaF_6 (space group P3m1), are reported. The structures, which contain face sharing octahedra, are discussed in comparison to the hexagonal fluoroperovskites. The mean distances observed, Cr-F = 1.910 Å, Fe-F = 1.926 Å, Ga-F = 1.93 Å, are compared to recently published data.

Einleitung

Vor einigen Jahren berichteten wir über die Strukturen der hexagonalen Fluorperowskite $A^{I}M^{II}F_{3}$ (1, 2). Die Ausbildung dieser verschiedenen Stapelvarianten, die sich von der kubischen Perowskitstruktur ableiten, ließ sich im Zusammenhang mit dem über 1 liegenden Goldschmidt'schen Toleranzfaktor $t = r_A + r_F / \sqrt{2} (r_M + r_F)$ der Verbindungen verstehen. Unsere schon zu jener Zeit vorliegenden Strukturuntersuchungen an hexagonalen Einkristallen von Cs_2NaCrF_6 und verwandten Verbindungen (2, 3) gaben zu erkennen, daß bei Elpasolithen $A_2^{1}B^{1}M^{11}F_6$ $(r_A > r_B > r_M)$ ganz ähnliche Strukturverhältnisse wie bei den verschiedenen Perowskittypen bestehen. Insbesondere bilden sich auch hier hexagonale Varianten nur, wenn der modifizierte Toleranzfaktor $t' = r_A + r_F / \sqrt{2((r_B + r_M)/2)} + r_F) = \sqrt{2}(r_A + r_F)/(r_B + r_M + 2r_F)$ der Verbindungen über 1 liegt (4).

Der am längsten bekannte hexagonale Vertreter aus der Klasse der Elpasolithe ist die Hochtemperaturmodifikation von K₂LiAlF₆ $(t' = 1.00_5)$ (5,6). Dieselbe Struktur wurde neuerdings möglicherweise bei Cs₂NaTiF₆ (7), sonst aber nur bei einigen Hochdruckphasen A_2BMF_6 beobachtet (8). Viel häufiger dagegen sind hexagonal-rhomboedrische Vertreter vom Typ des Cs_2NaCrF_6 ($t' = 1.03_1$) (3, 4, 9). Sie sind nicht nur bei den Cäsium-Natrium-Verbindungen Cs₂NaMF₆ verbreitet, sondern auch bei den entsprechenden Rubidium-Lithium-Elpasolithen Rb₂LiMF₆, die bei gleichem M(III)-Ion praktisch denselben Toleranzfaktor besitzen (4). Außerdem tritt dieser Strukturtyp bei einigen Hochdruckphasen Tl_2LiMF_6 und Cs_2LiMF_6 auf (8).

^{*} I und II: siehe Literaturliste (43) und (54).

Es gibt in der Literatur (10-12) allerdings einige widersprüchliche Angaben zur Symmetrie von Verbindungen des Cs₂NaCrF₆-Typs. Diese Arbeiten enthalten aber keine vollständigen Struktur bestimmungen und basieren z.T. nur auf der Auswertung publizierter Pulverdaten (12). Wir hoffen daher, durch die nachfolgend beschriebenen Strukturaufklärungen an Einkristallen der isostrukturellen Verbindungen Cs₂NaCrF₆ und Cs_2NaFeF_6 (13, 14) auch die Zweifel an der hexagonal-rhomboedrischen Symmetrie dieses Strukturtyps auszuräumen. Dabei muß bis zur Durchführung vollständiger Strukturbestimmungen an Rb₂LiAlF₆ (15) und anderen Elpasolithen Rb_2LiMF_6 allerdings offenbleiben, ob diese Verbindungen-wie wir glauben-mit Cs2NaCrF6 isotyp sind, oder tatsächlich orthorhombisch bzw. monoklin kristallisieren (10-12, 15).

Neben den genannten hexagonalen Elpasolithstrukturen vom Hochtemperatur- K_2LiAlF_6 - und vom Cs_2NaCrF_6 -Typ kann einstweilen nur noch ein dritter Typ als gesichert gelten, den wir am Beispiel der hexagonalen Verbindung Cs_2LiGaF_6 (t' = 1.10_2) aufgeklärt haben (13, 14). Die Einkristallstrukturbestimmung an dieser Verbindung wird im folgenden ebenfalls wiedergegeben. Nach unseren Befunden (8, 14) kristallisieren in diesem Typ auch die Verbindungen Cs_2LiAlF_6 und Cs_2LiCrF_6 , die in der Literatur orthorhombisch bzw. monoklin, aber ohne detaillierte Strukturangaben, beschrieben sind (10, 11, 16, 17).

2. Experimentelle Angaben

Darstellung und Analyse

Die Verbindungen Cs₂NaCrF₆, Cs₂NaFeF₆ und Cs2LiGaF6 wurden durch Tempern stöchiometrischer Gemische von CsHF₂ mit den entsprechenden binären Fluoriden im Platinröhrchen unter Vakuum bzw. Inertgas dargestellt. Für röntgenographische Untersuchungen geeignete, vorwiegend plättchenförmige Einkristalle von Cs₂NaCrF₆ (grün) und Cs₂NaFeF₆ (farblos) waren aus den etwas über ihren Schmelzpunkt (ca. 900 bzw. 750°) hinaus erhitzten und dann langsam abgekühlten Proben zu isolieren. Ein bei 800°C darmehrphasiges Präparat gestelltes von Cs₂LiGaF₆ konnte erst durch mehrtägiges Tempern bei 400-500° in eine fast einheitliche Phase überführt werden. Dabei bildeten sich ebenfalls einige plättchenförmige, farblose Einkristalle der Verbindung. Die polarisationsmikroskopische Untersuchung ergab, daß in allen drei Fällen die Einkristalle der genannten Verbindungen optisch einachsig waren, mit der Vorzugsrichtung senkrecht zur Plättchenebene (14).

Die in Tab. 1 zusammengestellten Ergebnisse der chemischen Analyse und der Dichtemessung beziehen sich auf die polykristallinen Pulver, denen die Einkristalle entstammen. Es sei an dieser Stelle bemerkt,

	Cs2NaCrF6		Cs ₂ N	aFeF ₆	Cs ₂ L	Cs₂LiGaF ₆	
	gef.	ber.	gef.	ber.	gef.	ber.	
Cs [%]			58.4	58.10	58.3	58.23	
M ¹¹¹ [%]	11.9	11.44	12.3	12.18			
F1%]	25.0	25.02	24.9	24.86	24.9	24.97	
d[g cm ⁻³]	4.41	4.426	4.36	4.407	4.33	4.407	
a [Å]	6.24	6.243 ± 0.007		± 0.007	6.249 ± 0.005		
c [Å]	30.33	+ 0.01	30.48	± 0.01	5.086	± 0.005	
c/a	4.	858	4.	864	0.8	3139	
Z		6		6		1	

TABELLE I

ANALYSEN, DICHTEN UND GITTERKONSTANTEN DER VERBINDUNGEN

daß die Röntgenpulveraufnahmen ähnlich hergestellter polykristalliner Elpasolithe A_2BMF_6 häufig noch die stärksten Interferenzen der entsprechenden Kryolithe A_3MF_6 bzw. B_3MF_6 erkennen lassen. Vielleicht ist dies der Grund für die teilweise verwirrenden Angaben über die Zellabmessungen der nichtkubischen Elpasolithe (12). Außerdem besteht auch hier, wie schon von den hexagonalen Perowskiten bekannt (2, 18), die Möglichkeit der Polymorphie. Als Beispiel hierfür sei die Bildung von kubischem Cs₂NaFeF₆ bei tieferen Temperaturen erwähnt. Diese mit der Hochdruckform (8) identische Modifikation erhielten wir bei der Fluorierung von $Cs_2NaFe(CN)_6$ bei etwa 400°. Ihre Umwandlung in die hexagonale Form ist erst nach Erhitzen über den Schmelzpunkt vollständig (13, 14). Auch von Cs₂LiGaF₆ konnten wir einzelne Kristalle isolieren, die offenbar eine polymorphe Modifikation mit 12 L-Struktur (a = 6.17, c = 29.80 Å) darstellen (14).

Röntgenographische Untersuchung, Intensitätsdaten

Die in Tab. 1 mit aufgeführten Zellparameter wurden an den Einkristallen der dargestellten Verbindungen gemessen. Durch Laue-, Buerger- und Weißenberg-Aufnahmen mit Ag-, Mo-, und Cu-Strahlung erfolgte die Überprüfung der Symmetrie und der systematischen Auslöschungen. Das erste Strukturmodell für $Cs_2NaCrF_6(3)$ basierte auf den mit einem integrierenden Flying Spot Microdensitometer (Joyce-Loebl) gemessenen 64 Filmintensitäten einer Präzessions-Aufnahme $(AgK\alpha)$ der Reflexe *hhl*. Zur Strukturbestimmung von Cs_2LiGaF_6 (14) wurden die mit demselben Gerät gemessenen 398 Film-Präzessions-Aufnahmen intensitäten von (MoK α) der Ebenen hk0, hkl, und hk2, sowie *hhl*, h(h+1)l bis h(h+5)l ausgewertet. Auf eine Absorptionskorrektur für den etwa $0.05 \times 0.10 \times 0.15 \,\mathrm{mm^3} = 0.75 \cdot 10^{-3} \,\mathrm{mm^3} (= V)$ großen Cs₂LiGaF₆-Kristall mit $\bar{\mu}R = 0.67$ (R = $\frac{1}{2}V^{1/3}$) wurde verzichtet.

Zur Verfeinerung der Cs₂NaCrF₆-Struktur wurden von dieser Verbindung und ebenso von dem isostrukturellen Cs₂NaFeF₆ genauere Intensitätsdaten mithilfe eines automatischen Vierkreis-Kappa-Diffraktometers (CAD4, Nonius) gesammelt. Unter Verwendung monochromatisierter Molybdänstrahlung wurden innerhalb einer Kugelschale von $2 < \theta < 30^{\circ}$ alle nicht systematisch ausgelöschten hexagonalen Reflexe im Bereich h = -3 bis 8, k = 0 bis 8, l = 0 bis 42 gemessen. Die Aufnahme erfolgte im $\omega/2\theta$ -scan-Verfahren, wobei sich die Zählzeiten innerhalb einer Maximaldauer von 3^m nach der Intensität der Reflexe richteten. Mit entsprechend auf ein Viertel gekürzten Zählzeiten wurde der Untergrund zu beiden Seiten jedes Reflexes registriert.

Auf die ermittelten Nettointensitäten wurden Korrekturen für Lorentz-Polarisation (19) und Absorption angewandt. Die Absorptions korrektur für den kugelförmig geschliffenen Cs₂NaCrF₆-Kristall ($\bar{\mu}R = 1.97$ bei $\bar{\mu} = 1.31$ cm⁻¹) wurde nach tabellierten Werten, für den plättchenförmigen Cs₂NaFeF₆-Kristall (ca. $0.1 \times 0.2 \times 0.2 \text{ mm}^3$, $\bar{\mu} = 134 \text{ cm}^{-1}$) nach dem Gauss'schen Näherungsverfahren (20) vorgenommen (21). Der erhaltene Datensatz von jeweils rund 1000 relativen Strukturfaktoren wurde durch Mittelung der symmetrieäquivalenten Reflexe auf 424 (Cs₂NaCrF₆) bzw. 420 (Cs₂NaFeF₆) Beobachtungswerte F₀ reduziert (22). (Durch einen Bandübertragungsfehler gingen im Falle von Cs₂NaFeF₆ die hk0-Reflexe verloren). Die erforderlichen Rechnungen wurden auf einer Telefunken TR 4 der Zentralen Rechenanlage Marburg durchgeführt.

Für die weiteren Rechnungen zur Strukturaufklärung stand am Fachbereich Geowissenschaften der Universität Marburg eine IBM 370/145 zur Verfügung, auf der das Programmsystem X-Ray 67 (23), besonders mit seinem Verfeinerungsprogramm nach der Methode der kleinsten Fehlerquadrate (24), eingesetzt werden konnte. Den Berechnungen legten wir die Atomformfaktoren von Cromer und Waber (25) zugrunde. Auf eine Dispersionskorrektur wurde verzichtet.

3. Strukturbestimmungen an den Verbindungen Cs₂NaCrF₆ und Cs₂NaFeF₆

Cs_2NaCrF_6

Die mit ihren hexagonalen Zellabmessungen in Tab. 1 angegebene Verbindung Cs_2NaCrF_6 läßt sich auch rhomboedrisch beschreiben. Für die 2 Formeleinheiten enthaltendeprimitive Rhomboederzelle betragen die Gitterkonstanten dann $a = 10.73_3$ Å, $\alpha =$ 33.82°. Außer der Rhomboederbedingung -h + k + l = 3n ließen sich den Einkristallaufnahmen keine weitergehenden systematischen Auslöschungen für die hexagonal aufgestellte Zelle entnehmen. Die Laue- und Präzessionsaufnahmen zeigten die Symmetrie $\overline{3}m$. Von den danach möglichen rhomboedrischen Raumgruppen R32, R3m und $R\overline{3}m$ wurde die letztgenannte, zentrosymmetrische Raumgruppe $R\overline{3}m$, in der auch der hexagonale Fluorperowskit CsCoF₃ kristallisiert (2), den ersten Modellrechnungen zugrundegelegt. Im Verlaufe der späteren Verfeinerungen bestätigte sich die Wahl dieser Raumgruppe.

Die Aufstellung eines Strukturmodells basierte auf folgenden Überlegungen: Von den hexagonalen Perowskiten CsMF₃, mit deren a-Achsen von etwa 6.2 Å der entsprechende Wert für Cs₂NaCrF₆ gut übereinstimmt, ist die ungefähre Dicke einer dichtest gepackten CsF₃-Schicht mit etwa 2.5 Å bekannt (1, 2). Im Einklang mit den 6 Formeleinheiten Cs₂NaCrF₆ pro Zelle ergibt sich daraus für diese Verbindung eine Stapelung von 12 Lagen (12L) solcher Schichten entlang der c-Achse. Die Möglichkeiten der Stapelfolge sind nun aber stark eingeschränkt, weil die rhomboedrische Symmetrie verlangt, daß die charakteristische Sequenz sich schon nach einem Drittel, also nach nur 4 Lagen, im Sinne einer kubischen Folge ABC wiederholt. Das Problem beschränkte sich somit darauf, eine plausible und mit der genannten rhomboedrischen Wiederholung vereinbare Viererfolge dichtest gepackter CsF₃-Schichten mit den darin in Oktaederlücken eingebetteten Na- und Cr-Ionen aufzufinden. Dabei war anzunehmen, daß die Oktaederlücken-wie in allen Elpasolithen-abwechselnd von den beiden Kationen besetzt werden. Zusammen mit der Vermutung, daß wegen des über 1 liegenden Toleranzfaktors das Auftreten flächenverknüpfter Oktaeder in der Cs2NaCrF6-Struktur nicht unwahrscheinlich ist, führte dies unmittelbar zu einem Modell, wie es der Abb. 1 der endgültigen Struktur entspricht.

ABB. 1. Elementarzelle der Cs_2NaCrF_6 -Struktur. Die Cäsiumatome sind durch die thermischen Schwingungsellipsoide (97% Aufenthaltswahrscheinlichkeit) wiedergegeben.

Die erste Überprüfung und Verfeinerung dieses Strukturvorschlags mithilfe von 64 Film-reflexen *hhl* führte zu einem konventionellen *R*-Faktor von 24% (ohne die 24 nichtbeobachteten Reflexe: R' = 16%). Ein alternatives Modell mit inverser Anordnung der Kationen Na und Cr konnte wegen der weit schlechteren Übereinstimmung (R = 61 bzw. R' = 50%) ausgeschieden werden (3).

Die Punktlagen und endgültigen Atomparameter für die in der Raumgruppe R3m - D_{3d}^5 (Nr. 166) (26) hexagonal aufgestellte sind Tab. Cs₂NaCrF₆-Struktur in II aufgeführt. Unter Freigabe individueller Temperaturfaktoren, die jedoch nur für die Cs- und Cr-Atome anisotrop verfeinert wurden, resultierte mit diesen Werten ein konventioneller R-Faktor von 3.6% für 424 mit einheitlichem Gewicht berücksichtigte Diffraktometer-Reflexe hkl, einschließlich der 10 mit $F_0 = 0$ registrierten Reflexe. In Tab. III sind die zugehörigen beobachteten und berech-

Atom	Punktlage	x	У	Ζ	B bzw. B_{11}	B ₃₃
Cr(1)	3 <i>a</i>	0	0	0	0.414 (88)	0.480 (74)
Cr(2)	36	0	0	1/2	0.568 (92)	0.470 (74)
Na	6 <i>c</i>	0 0	0 0	10/24 = 0.417 0.392		
Cs(1)	6 <i>c</i>	0 0 0 0	0 0 0 0	0.40230 (18) 3/24 = 0.125 0.128 0.12800 (3)	0.947 (33)	1.232 (37)
Cs(2)	6 <i>c</i>	0 0 0	0 0 0	7/24 = 0.292 0.281 0.28116 (3)	0.990 (34)	1.475 (37)
F(1)	18 <i>h</i>	1/6 0.143 0.14131 (90)	-x -x -x	11/24 = 0.458 0.463 0.46203 (13)	1.140 (68)	
F(2)	18 <i>h</i>	1/6 0.179 0.18827 (90)	-x -x -x	15/24 = 0.625 0.627 0.63099 (15)	1.508 (75)	

TABELLE II

PUNKTI AGEN UND ATOMPARAMETER FÜR CS-NaCrE, IN DER RAUMGRUPPE $R^{3}m^{4}$

" Die Tabelle enthält für die höherzähligen Punktlagen zunächst die idealisierten, als trial-Werte für das erste Modell verwendeten Koordinaten. Darunter sind die daraus mit den Filmdaten resultierenden und zuletzt die endgültigen Parameter angegeben, die sich aus der späteren Verfeinerung mit den Diffraktometerdaten ergaben. Die in Klammern angegebenen Standardabweichungen beziehen sich jeweils auf die letzten Dezimalstellen. Für die anisotropen Temperaturfaktoren $B_{ij}[A^2]$ in dem Ausdruck $\exp[-\frac{1}{4}(B_{11}ha^{*2} + \cdots + 2B_{12}hka^{*b^{*}} + \cdots)]$ gilt wegen der Punktsymmetrie der Lagen 3a und 6c: $B_{11} = B_{22} = 2 B_{12}$ und $B_{13} = B_{23} = 0^{29}$).

TABELLE IV

PUNKTLAGEN UND ATOMPARAMETER FÜR Cs₂NaFeF₆ in der Raumgruppe R3m (vergl. Tab. 2)

Atom	Punktlage	x	у	z	B bzw. B_{11}	B ₃₃
Fe(1)	3a	0	0	0	0.485 (62)	0.446 (52)
Fe(2)	3 <i>b</i>	0	0	1	0.703 (78)	0.538 (56)
Na	6 <i>c</i>	0	0	0.40240 (14)	1.104 (63)	
Cs(1)	6 <i>c</i>	0	0	0.12777 (2)	1,092 (26)	1.282 (22)
Cs(2)	6 <i>c</i>	0	0	0.28126 (2)	1.168 (26)	1.584 (22)
F(1)	18 <i>h</i>	0.14124 (73)	$=\bar{x}$	0.46198 (11)	1.453 (55)	· · · ·
F(2)	18 <i>h</i>	0.18684 (76)	$=\bar{x}$	0.63077 (11)	1.682 (59)	

neten Strukturfaktoren 10 F_0 und 10 F_c Cs_2NaFeF_6 zusammengestellt.¹

¹ Tables III and VIII have been deposited as Document No. NAPS 02787 with the National Auxiliary Publications Service, c/o Microfiche Publications, 440 Park Avenue South, New York, New York, 10016. A copy may be secured by citing the document number and by remitting \$5.00 for photocopy or \$3.00 for microfiche. Advance payment is required. Make check or money order payable to Microfiche Publications.

Bei der Verfeinerung der Cs₂NaFeF₆-Struktur, deren rhomboedrische Zelle die Gitterkonstanten a = 10.78, Å, $\alpha = 33.78^{\circ}$ besitzt. wurde entsprechend wie bei Cs₂NaCrF₆ verfahren. Nachdem Einkristall-Filmaufnahmen die Laue-Symmetrie $\bar{3}m$ der Verbindung bestätigt hatten, wurden sogleich Diffraktometerdaten gesammelt und aus-

TABELLE	V
---------	---

Verbindung	a [Å]	c [Å]	c/a	z	Raumgruppe
Cs-LiGaF6	6.249	5.086	0.814	1	P3m1
$Cs_2 \Box TiF_6(27)$	6.15	4.96	0.807	1	P3m1 (28)
$Cs_2NiNiF_6(2)$	6.236	5.22 ₅	0.838	1	P6 ₃ /mmc

GITTERKONSTANTEN UND RAUMGRUPPEN FÜR CS2LiGaF6, CS2TiF6 UND CSNiF3

gewertet. Nach Ausschluß 4 extinktionsverdächtiger Reflexe erreichte der *R*-Faktor für die verbleibenden 416 Reflexe *hkl* (einschließlich 12 mit $F_0 = 0$ registrierten) im Verlaufe sukzessiver Verfeinerungszyklen einen Wert von R = 3.0%. Die resultierenden Lage- und Temperatur-parameter sind in Tab. IV zusammengestellt. Von einer Wiedergabe der F_0 , F_c -Tabelle (14) wird wegen der Analogie zu Cs₂NaCrF₆ abgesehen.

4. Strukturbestimmung an der Verbindung Cs₂LiGaF₆

Die hexagonalen Gitterkonstanten der Verbindung Cs₂LiGaF₆ sind in Tab. V nochmals im Vergleich zu den Zellabmessungen der Verbindungen Cs_2TiF_6 (27) und $CsNiF_3$ (2) aufgeführt. Aus der Åhnlichkeit der Werte war zu schließen, daß die von den genannten Verbindungen bekannte einfach hexagonale Struktur mit 2 Lagen (2L) dichtest gepackter CsF₃-Schichten auch bei Cs₂LiGaF₆ vorliegt. Das Fehlen systematischer Auslöschungen auf den Einkristallaufnahmen von Cs₂LiGaF₆ ist insbesondere mit der Raumgruppe P3m1- D_{3d}^3 (Nr. 164) (26) in Einklang, die der im K₂GeF₆-Typ (28) kristallisierenden Verbindung $Cs_2TiF_6 = Cs_2 \Box TiF_6$ zuzuordnen ist. Ein auf dieser Raumgruppe basierendes Strukturmodell für Cs2LiGaF6, in dem die Oktaederlücken 🗌 der Cs₂ 🗌 TiF₆-Struktur durch Lithium besetzt wurden, ließ sich auf $R = \sum |F_0 - |F_c|| / \sum F_0 =$ erfolgreich 0.108 verfeinern.

Dieser R-Faktor bezieht sich auf die Gesamtzahl von 197 Filmreflexen, die nach Mittelung der symmetrieäquivalenten unter den 398 gemessenen Werten und Ausschluß von 2 extinktionsverdächtigen Reflexen zur Verfeinerung benutzt wurden. Die darin enthaltene Zahl von 40 nicht meßbaren Reflexen, die größtenteils mit der Hälfte der gemessenen Minimalintensitäten eingesetzt wurden, wurde bei der Kleinste-Quadrate-Verfeinerung mit gleichem Gewicht wie die übrigen Reflexe berücksichtigt. In Tab. VI sind die *R*-Faktoren für die 9 Gruppen von Reflexen, die mit verschiedenen Skalierungsfaktoren verfeinert wurden und den 9 ausgewerteten Präzessionsaufnahmen entstammen, getrennt aufgeführt.

In Tab. VII sind die Punktlagen und resultierenden Atomparameter für die Raumgruppe $P\overline{3}m1$ der Cs₂LiGaF₆-Struktur wiedergegeben. Die Temperaturfaktoren wurden individuell, aber nur für die Cäsiumatome anisotrop—mit der symmetriebedingten Einschränkung $B_{11} = B_{22} = 2B_{12}$ und

TABELLE VI

R-Faktoren der innerhalb jeder der 9 Präzessionsaufnahmen von Cs₂LiGaF₆ Symmetrieunabhängigen Reflexe

Präzessions- achse	Gruppe	Reflexe	Anzahl	R
	1	hk0	22	0.075
[001]	2	h k 1	31	0.066
	3	h k 2	20	0.114
	4	h h l	19	0.084
	5	h(h+1)l	35	0.136
[1]0]	6	h(h+2)l	25	0,121
• •	7	h(h + 3)l	18	0.134
	8	h(h+4)l	16	0.092
	9	h(h + 5)l	11	0.155
Insgesamt		h k l	1 9 7	0.108

Punktlagen und Atomparameter für Cs ₂ LiGaF ₆ in der Raumgruppe $P\overline{3}m1$								
Atom	Punktlage	X	у	Z	<i>B</i> bzw. <i>B</i> ₁₁	B ₃₃		
Ga	1a	0	0	0	1.15 (20)			
Li	1 <i>b</i>	0	0	$\frac{1}{2}$	0			
Cs	2 <i>d</i>	1	3	0.2699 (10)	1.14 (2)	2.68 (3)		
F	6i	0.1388 (80)	=2x	0.7618 (50)	1.83 (50)			

Авв. 2. Elementarzelle der Cs₂LiGaF₆-Struktur. (97%—Ellipsoide für Cäsium.)

 $B_{13} = B_{23} = 0$ (29)—zur Verfeinerung freigegeben. Der isotrope Lithium-Temperaturfaktor mußte wegen seiner Tendenz, negative Werte anzunehmen, zu B = 0 fixiert werden. Die versuchsweise unter der Annahme einer statistischen Gleichverteilung der Lithiumund Galliumionen auf die beiden Punktlagen la und 1b durchgeführte Rechnung ergab wesentlich schlechtere *R*-Faktoren. In Tab. VIII¹ sind die nach Reflexgruppen (s. Tab. VI) geordneten beobachteten und berechneten Strukturfaktoren für Cs₂LiGaF₆ zusammengestellt. Abb. 2 veranschaulicht die Struktur.

5. Diskussion

Die beiden neu bestimmten Strukturen vom Typ des Cs_2NaCrF_6 und des Cs_2LiGaF_6

ergänzen die Reihe der Elpasolithe in analoger Weise, wie früher die Strukturen vom CsCoF3und vom CsNiF₃-Typ die Reihe der Fluorperowskite (1, 2). Um dies zu verdeutlichen, sind in Abb. 3 die entsprechenden, bis jetzt bei Fluorverbindungen AMF_3 bzw. A_2BMF_6 aufgefundenen Strukturvarianten schematisch zusammengestellt. Die Toleranzfaktoren der in Abb. 3 aufgeführten Verbindungen lassen erkennen, daß offenbar ein Zusammenhang besteht zwischen der Größe des Toleranzfaktors und der Zahl der Oktaeder, die in dem resultierenden Strukturtyp Flächenverknüpfungen bilden. Dies ist schon an anderer Stelle mit dem Platzbedarf der großen Alkalionen begründet worden (1, 2, 4): Je mehr der Toleranzfaktor den Grenzwert von 1 überschreitet, umso weniger passen diese A¹-Ionen

ABB. 3. Vergleich der kubischen und hexagonalen Fluorperowskit- und Elpasolithstrukturen in (110)-Schnitten.

noch in das kubische Oktaedergerüst, das in den normalen Perowskiten bzw. Elpasolithen (4, 30) vorliegt und dessen Dimensionen die übrigen Ionen bestimmen. Daher kommt es zu einer eindimensionalen Aufweitung der Struktur, die ohne nennenswerte Veränderung der Abstände in den Oktaedern durch sukzessiven Übergang von der Ecken- zur Flächenverknüpfung erreicht werden kann. Es spricht für diese Deutung einer wenigstens eindimensional gegebenen Ausdehnungsmöglichkeit, daß die thermischen Schwingungsellipsoide aller Cäsiumionen der in dieser Arbeit untersuchten Verbindungen in Richtung der c-Achsen elongiert sind $(B_{33} > B_{11})$ und daß dies bei Cs₂LiGaF₆ ausgeprägter, als bei Cs₂NaCrF₆ und Cs₂NaFeF₆ der Fall ist (s. Tab. II, IV, VII und Abb. 1, 2).

Während bei Sauerstoffperowskiten (31-33)zahlreiche hexagonale Stapelvarianten existieren, sind für den stufenweisen Übergang von Raumnetz- zu Kettenstrukturen bei Fluorperowskiten und Elpasolithen unseres Wissens bis jetzt nur je vier und überdies—wie aus Abb. 3 hervorgeht—weitgehend anloge Strukturen bekannt. Hervorzuheben ist die Parallele zwischen den Gliedern RbZnF₃ (2) und K₂LiAlF₆ (5, 6), die mit ihren Toleranzfaktoren t = 1 an der Grenze zwischen kubischem und hexagonalem Bereich stehen und dementsprechend dimorph sind. Ihre hexagonalen Hochtemperaturformen enthalten wie die hexagonale BaTiO₃-Struktur (34) Gruppen von zwei flächenverknüpften Oktaedern. Bei größeren Toleranzfaktoren bilden sich schon Strukturen mit Kettenfragmenten von drei flächenverknüpften Oktaedern: Dem im BaRuO₃-Typ (35) kristallisierenden Fluorperowskit $CsCoF_3$ (9L) (2) ist die ebenfalls rhomboedrische, aber auch noch Einzeloktaeder enthaltende Cs_2NaCrF_6 -Struktur (12L) an die Seite zu stellen. Schließlich treten bei den größten Toleranzfaktoren die sich entsprechenden reinen Kettenstrukturen des CsNiF₃ (2) (vom BaNiO₃-Typ (36)) und des neuen Cs₂LiGaF₆ auf.

Eine zu Cs₂LiGaF₆ analoge Oxidstruktur ist uns nicht bekannt. Dagegen konnte die Cs₂NaCrF₆-Struktur auch für die Verbindungen Ba₂NiTeO₆ (37) und—in einer triklinen Jahn-Teller-Variante — Ba₂CuTeO₆ (38) sichergestellt werden. Wie im Falle der Fluoride nimmt auch hier das höchstgeladene Kation jeweils die Zentralpositionen im Einzeloktaeder und in der Dreiergruppe ein. Dagegen finden sich in der eng verwandten, aber lückenhaften 12L-Struktur von Ba₄Co \square Re₂F₁₂ (39) die Re(VII)-Ionen in den endständigen Oktaedern der Dreiergruppe, deren Zentrum unbesetzt ist. Co(II) nimmt die verbleibende Position im Einzeloktaeder ein. Nach neuesten Untersuchungen (39a) kristallisieren auch Fluoride $Cs_2M^{II}M^{II'}F_6$ der zweiwertigen Übergangsmetalle in der Cs_2NaCrF_6 -Struktur, wenn der Radienunterschied der beiden Ionen M(II) und M(II)'

Zentralion	Abstände [Å] und Winkel [))	Cs₂NaCrF6	Cs₂NaFeF6	Cs2LiGaF6
M ^{III}	$M^{\text{III}}(1)$ -F(2) $M^{\text{III}}(2)$ -F(1)	(6 <i>x</i>) (6 <i>x</i>)	1.906 (5) 1.913 (6)	1.930 (4) 1.922 (4)	na y managementary en
	Mittel M ^{III} -F	(6 <i>x</i>)	1.910	1.926	1.930 (37)**
Bı	B ^I -F(1) -F(2)	(3x) (3x)	2.370 (6) 2.272 (7)	2.377 (6) 2.266 (6)	
	Mittel B ¹ -F	(6 <i>x</i>)	2.321	2.322	2.007 (37)**
Cs ¹	Cs(1)-F(1)	(3x) $(6x)$	3.116 (4) 3.134 (4)	3.137 (4) 3.146 (3)	3.270 (34)*** 3.143 (36)
	-F(2)	(3x)	3,208 (5)	3.220 (4)	3.334 (34)***
	Cs(2)-F(1)	(12x) (3x) (6x)	3.148 3.114 (5) 3.170 (6)	3.162 3.130 (5) 3.180 (5)	
	-F(2)	(3x)	3.353 (5)	3.362 (4)	
	Mittel Cs(2)-F	(12 <i>x</i>)	3.202	3.213	
	Mittel Cs-F	(12x)	3.175	3.188	3.223
M ¹¹¹ (2)	F(1)-(F1)	(6x) (6x)	2.764 (6) 2.647 (9)*	2.779 (5) 2.655 (7)*	2.851 (44) 2.602 (50)*
	Mittel F(1)-F(1)	(12x)	2.706	2.717	
М^ш (1)	F(2)-F(2)	(6 <i>x</i>) (6 <i>x</i>)	2.673 (8) 2.717 (6)	2.705 (6) 2.754 (5)	
	Mittel F(2)-F(2)	(12x)	2.695	2.730	
$M^{ m m}$	Mittel F-F	(12x)	2.700	2.723	2.723
Bı	F(1)-F(1) F(1)-F(2) F(2)-F(2)	(3 <i>x</i>) (6 <i>x</i>) (3 <i>x</i>)	2.647 (9)* 3.366 (7) 3.526 (9)	2.655 (7)* 3.368 (5) 3.513 (8)	2.602 (50)* 3.057 (43)*** 2.602 (50)*
	Mittel F-F	(12x)	3.226	3.226	2.830
\mathcal{M}^{m}	F(1)-M(2)-F(1) F(2)-M(1)-F(2)		87.52/92.48 (35) 90.93/89.07 (35)	87.40/92.60 (30) 91.03/88.97 (30)	84.77/95.23 (2.92)**
Bı	F(1)-B ¹ -F(1) F(1)-B ¹ -F(2) F(2)-B ¹ -F(2)		67.89 (35) 92.91 (35) 101.76 (35)	67.93 (30) 93.00 (30) 101.62 (30)	80.80/99.20 (2.86)**
	M ¹¹¹ –B ^I [001]		2.963 (5)	2.975 (4)	2.543
	idealisierte Höhe ei Oktaederschicht	ner	2.527 = c/12	2.540 = c/12	2.543 = c/2

 TABELLE IX

 Interatomare Abstände und Winkel in Cs_2NaCrF_6 , Cs_2NaFeF_6 und $Cs_2LiGaF_6^a$

^a Die in Klammern angegebenen Standardabweichungen beziehen sich auf die Unsicherheit der letzten Dezimalstellen.

* Abstand in der gemeinsamen Oktaederfläche.

** Aus Symmetriegründen nur 1 unabhängiger Abstand bzw. Winkel.

*** Abstand zum Anion derselben Punktlage, aber in verschiedenen Schichthöhen z.

genügend groß ist. Für die Ausbildung einer geordneten Verteilung der oktaedrisch koordinierten Kationen in dieser Struktur ist also ein Ladungsunterschied der Ionen nicht unbedingt erforderlich. Insbesondere die größeren Ionen Cd(II) und Mn(II) vermögen so die Position der Na(I)-Ionen in der Cs_2NaCrF_6 -Struktur einzunehmen. Für die Mn(II)verbindungen Cs_2MnCoF_6 und Cs_2MnNiF_6 ergeben sich daraus interessante ferrimagnetische Eigenschaften (39a).

In Tab. IX sind die interatomaren Abstände und Winkel für die drei von uns untersuchten Verbindungen zusammengefaßt. Die Abb. 4 und 5 verdeutlichen die gefundenen Größen

ABB. 4. Größe und Verknüpfung der Oktaeder in der Cs_2NaCrF_6 -Struktur.

ABB. 5. Größe und Verknüpfung der Oktaeder in der $C_{s_2}LiGaF_6$ -Struktur.

und Anordnungen der Oktaeder in den Strukturen von Cs₂NaCrF₆ und Cs₂LiGaF₆ im Detail. Wie ersichtlich, sind in den $Cs_2NaM^{III}F_6$ -Strukturen die M^{III}-F-Abstände in den beiden kristallographisch verschiedenen MF₆-Oktaedern innerhalb der Standardabweichungen gleich. Obwohl die Oktaederwinkel nahe bei 90° liegen, ist die trigonale Dehnung für das Zentraloktaeder der Dreiergruppe in beiden Fällen deutlich und signifikant. Die Ursache hierfür ist in der starken Kationenabstoßung M^{III}-Na innerhalb dieser Gruppe zu sehen, als deren Folge auch die Natriumatome weit (um ca. 0.4 Å) aus ihrer idealen Position ausgelenkt sind. Entsprechend stark, aber für beide Verbindungen übereinstimmend, sind die NaF6-Oktaeder bezüglich der Abstände (⊿Na-F≈0.1 Å) und vor allem der Winkel verzerrt. Zur Milderung bzw. Abschirmung der genannten Abstoßung erscheinen auch die gemeinsamen Oktaederflächen etwas kontrahiert. Hier werden bei allen drei Verbindungen die kürzesten und im Rahmen der Standardabweichungen gleichen F-F-Abstände von etwa 2.65 Å beobachtet.

In der Cs₂LiGaF₆-Struktur sind auch die Alkali–Fluor–Oktaeder zentrosymmetrisch. Wegen der Kationenabstoßung in der nun unendlichen Kette sind jedoch beide Oktaedersorten trigonal stark gedehnt, LiF₆ noch etwas mehr als GaF₆. Diese Dehnung scheint sich auch in den Ga-F-Abständen auszuwirken. Trotz der relativ hohen Standardabweichung könnte daher die im Cs₂LiGaF₆ (1.93 Å) beobachtete Vergrößerung gegenüber dem für GaF_3 (40) und LiMnGaF₆ (41) übereinstimmend berichteten Wert (1.89 Å) reell sein. Dafür spricht, daß auch in der Kettenstruktur des CsNiF₃ (2) und im verwandten Cs₄Ni₃F₁₀ (42) etwas größere Ni-F-Abstände, als sonst üblich, gefunden werden. Die im CsNiF₃ beobachteten spitzen Oktaederwinkel von 82.8° entsprechen genau dem Mittelwert, der sich für die beiden Oktaedersorten im Cs2LiGaF6 ergibt. Auch die Cs-F-Abstände in beiden Verbindungen, sowie in der verwandten, lückenhaften Kettenstruktur der zweikernigen Verbindung $Cs_3Fe_2 \Box F_9(43)$, sind praktisch gleich (s. Tab. X). Trägt man für die genannten Verbindungen die beobachteten Kation-Kation-Abstände gegen das

	I LOOK VERBINDDINGEN									
		Cr-F [Å]			Fe-F [Å]			Cs-F [Å]		
$r_{\rm cr} + r_{\rm F}$	(44)	1.900	$r_{\rm Fe} + r_{\rm F}$	(44)	1.930	$r_{\rm cs} + r_{\rm F}$	(44)	3.16		
Cr ₂ F ₅	(45)	1.892	KFeF₄	(52)	1.910	CsCoF ₃	(2)	3.15		
CrF3	(46)	1.90	K₂NaFeF6	(51)	1,910					
CaCrF ₅	(47)	1,902	Rb ₂ KFeF ₆	(13)	1.913	Cs ₂ NaCrF ₆	(13)	3.175		
BaLiCrF ₆	(48)	1.903	CaFeF ₅	(53)	1.915	Cs ₂ NaFeF ₆	(13)	3.188		
NaCrF ₄	(49)	1,908	R bFeF₄	(54)	1.918					
Rb ₂ CrF ₅	(50)	1,908	Cs₂NaFeF6	(13)	1.926	Cs ₃ Fe ₂ F ₉	(43)	3.218		
Cs₂NaCrF	6 (13)	1.910	CsFeF₄	(54)	1.928	Cs2LiGaF6	(13)	3.223		

(55)

(43)

1.929

1.932

1.951

SrFeF₅

Cs₃Fe₂F₉

Rb₂NaFeF₆ (13)

TABELLE X

Vergleich der (gemittelten) Kation-Fluorabstände einiger Chrom(III)-, Eisen(III)- und Cäsium-Fluorverbindungen

Produkt der Kationenladungen auf, so ergibt sich eine Gerade, die in Abb. 6 dargestellt ist. Diese lineare Abhängigkeit ist als Hinweis auf den weitgehend ionogenen Charakter der erwähnten Verbindungen zu werten. Der Zusammenhang ihrer Ketten- bzw. zweikernigen Inselstrukturen mit der K₂GeF₆-Struktur (28) ist bereits an anderer Stelle diskutiert worden (43).

1.933

 $K_2 NaCrF_6$ (51)

Mit Cs₂LiGaF₆ isostrukturell sind die Verbindungen Cs₂LiAlF₆ (a = 6.024, c = 4.990 Å, c/a = 0.828) und Cs₂LiCrF₆ (a = 6.248, c = 5.106 Å, c/a = 0.817), die allerdings ebenfalls erst durch Nachtempern bei etwa 600°C weitgehend rein zu erhalten waren (14). Dagegen fanden wir keine Anzeichen für die

ABB. 6. Kationen-Abstand (M_1-M_2) und -Ladungsprodukt (Z_1Z_2) in den Kettenstrukturen von Cs₂LiGaF₆, CsNiF₃ und Cs₃Fe₂ \square F₉.

Existenz analoger Phasen von Cs_2LiVF_6 und Cs_2LiFeF_6 . Eine mögliche Begründung dafür haben wir im Zusammenhang mit den Volumverhältnissen an anderer Stelle gegeben (8). Hier sei nur noch auf die Existenz verschiedener Hochdruckphasen der genannten Lithium- und Natriumverbindungen hingewiesen. Ihre Bildung läßt sich unter dem Aspekt eines durch Hochdruckeinfluß verkleinerten Toleranzfaktors gut verstehen (8).

CsNiF₃

(2)

3.226

Zum Vergleich mit den im Rahmen dieser Arbeit ermittelten Werten bringt Tab. X eine Zusammenstellung von Kation-Fluor-Abständen, die in anderen Chrom-, Eisen-, und Cäsium-Fluorverbindungen beobachtet wurden. Sie enthält auch die Radiensummen, die auf den von Shannon und Prewitt (44) angegebenen effektiven Radien für die Koordinations zahl 6 (Cr^{III}, Fe^{III}) bzw. 12 (Cs^I) basieren. Um hier eine befriedigende Übereinstimmung mit den experimentellen Werten in Tab. X zu erzielen, ist der für zweifach koordiniertes Fluor angegebene Wert von $r_F = 1.28_5$ Å eingesetzt worden. Die berechneten Radiensummen liegen dann innerhalb der Variationsbreite der beobachteten Abstände, die nur wenig mehr als 2% zwischen den Extremen umfaßt. Angesichts der verschiedenen Strukturen der in Tab. X zusammengestellten Verbindungen ist diese Konstanz der Abstände überraschend gut.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

Literatur

- I. D. BABEL, Structure and Bonding 3, 1 (1967).
- 2. D. BABEL, Z. Anorg. Allg. Chem. 369, 117 (1969).
- 3. D. BABEL UND R. HAEGELE, Vortrag Chemiedozententagung Karlsruhe (1969).
- D. BABEL, R. HAEGELE, G. PAUSEWANG, UND F. WALL, Mat. Res. Bull. 8, 1371 (1973).
- 5. H. G. F. WINKLER, Heidelberger Beitr. Mineral. Petrogr. 3, 297 (1952).
- 6. H. G. F. WINKLER, Acta Crystallogr. 7, 33 (1954).
- 7. F. J. WEISSENHORN, Dissertation, Tübingen (1972).
- 8. J. ARNDT, D. BABEL, R. HAEGELE, UND N. ROMBACH, Z. Anorg. Allg. Chem. 418, 193 (1975).
- E. ALTER UND R. HOPPE, Z. Anorg. Allg. Chem. 407, 305 (1974); 412, 110 (1975).
- 10. A. DE KOZAK, Rev. Chim. Minér. 8, 301 (1971).
- 11. J. CRETENET, Rev. Chim. Minér. 10, 399 (1973).
- 12. C. W. F. T. PISTORIUS, Rev. Chim. Minér. 12, 53 (1975).
- 13. R. HAEGELE, W. VERSCHAREN UND D. BABEL, Z. Naturf, 30 b, 462 (1975).
- 14. R. HAEGELE, Dissertation, Marburg (1974).
- K. GRJOTHEIM, J. L. HOLM, M. MALINOVSKY, UND S. A. MIKHAIEL, Acta. Chem. Scand. 25, (2) 1695 (1971).
- 16. J. CHASSAING, Rev. Chim. Minér. 5, 1115 (1968).
- 17. M. AMORASIT, B. JENSSEN-HOLM, UND J. L. HOLM, Acta. Chem. Scand. 27, 1831 (1973).
- R. HAEGELE, D. BABEL, UND D. REINEN, Z. Naturf. 31 b, 60 (1976).
- U. MÜLLER, CADLP, ein Algol-Programm zur Lorentz- u. Polarisationsfaktorkorrektur von Diffraktometerdaten, Marburg (1971).
- W. R. BUSING UND H. A. LEVY, Acta. Crystallogr. (Copenhagen) 10, 180 (1957).
- A. DUISENBERG, Algolprogramm zur Absorptionskorrektur. Labor. voor Kristalchemie der Rijksuniversiteit, Utrecht (1966).
- R. HAEGELE, SYMAEQ, Fortran-Programm zur Mittelung u. Sortierung symmetrieäquivalenter Reflexe, Marburg (1973).
- 23. J. M. STEWART *et al.*, X-Ray 67, Program System for X-Ray Crystallography, University of Maryland.
- W. R. BUSING, K. O. MARTIN, UND H. A. LEVY, ORFLS, Oak Ridge National Laboratory, Report ORNL-TM-305 (1962).
- 25. D. T. CROMER UND J. T. WABER, Acta Crystallogr. (Copenhagen) 18, 104 (1965).
- International Tables for X-Ray Crystallography, Vol. 1, Birmingham (1969).

- 27. B. COX UND A. G. SHARPE, J. Chem. Soc. 1783 (1953).
- J. L. HOARD UND W. B. VINCENT, J. Amer. Chem. Soc. 61, 2849 (1939).
- W. J. A. M. PETERSE UND J. H. PALM, Acta Crystallogr. 20, 147 (1966).
- 30. G. MENZER, Fortschr. Mineral. Kristallogr. Petrogr. 17, 61 (1932).
- 31. J. B. GOODENOUGH UND J. M. LONGO, Landolt-Börnstein-Tabellen, Neue Serie III, 4a, 126 (1970).
- 32. B. L. CHAMBERLAND, Inorg. Chem. 8, 286 (1969).
- 33. E. F. JENDREK, JR., A. D. POTOFF, UND L. KATZ, J. Solid. State Chem. 14, 165 (1975).
- 34. R. D. BURBANK UND H. T. EVANS, Acta Cryst. (London) 1, 330 (1948).
- 35. P. C. DONOHUE, L. KATZ, UND R. WARD, Inorg. Chem. 4, 306 (1965).
- 36. J. J. LANDER, Acta Crystallogr. (London) 4, 148 (1951).
- P. KÖHL, U. MÜLLER, UND D. REINEN, Z. Anorg. Alig. Chem. 392, 124 (1972).
- P. KÖHL UND D. REINEN, Z. Anorg. Allg. Chem. 409, 257 (1974).
- 39. J. M. LONGO, L. KATZ, UND R. WARD, Inorg. Chem. 4, 235 (1965).
- 39a. J.-M. DANCE, J. GRANNEC, UND A. TRESSAUD, Compt. Rendus 281C, 91 (1975).
- 40. F. M. BREWER, G. GARTON, UND D. M. L. GOODGAME, J. Inorg. Nucl. Chem. 6, 56 (1959).
- 41. W. VIEBAHN, Z. Anorg. Allg. Chem. 413, 77 (1975).
- 42. D. BABEL, Vortrag auf dem 2. Europäischen Fluorsymposium, Göttingen (1968).
- 43. F. WALL, G. PAUSEWANG, UND D. BABEL, J. Less-Common Metals 25, 257 (1971).
- 44. R. D. SHANNON UND C. T. PREWITT, Acta Crystallogr. B 25, 925 (1969); B 26, 1046 (1970).
- H. STEINFINK UND J. H. BURUS, Acta Crystallogr. 17, 823 (1964).
- 46. K. KNOX, Acta Crystallogr. 13, 507 (1960).
- 47. K. K. WU UND I. D. BROWN, Mater. Res. Bull. 8, 593 (1973).
- 48. D. BABEL, Z. Anorg. Allg. Chem. 406, 23 (1974).
- 49. G. KNOKE UND D. BABEL, unveröffentliche Ergebnisse (1975).
- 50. C. JACOBONI, R. DE PAPE, M. POULAIN, J. Y. LE MAROUILLE, UND D. GRANDJEAN, Acta Crystallogr. B, 30 2688 (1974).
- 51. K. KNOX UND D. W. MITCHELL, J. Inorg. Nucl. Chem. 21, 253 (1961).
- 52. G. HEGER, R. GELLER, UND D. BABEL, Solid State Comm. 9, 335 (1971).
- 53. R. VON DER MÜHLL, UND J. RAVEZ, Rev. Chim. Minér. 11, 652 (1974).
- 54. D. BABEL, F. WALL, UND G. HEGER, Z. Naturf. 29b, 139 (1974).
- 55. R. VON DER MÜHLL, F. DAUT, UND J. RAVEZ, J. Solid. State. Chem. 8, 206 (1973.)